Quantum-Chemical Study of the Structure and Properties of Hypothetical Superhard Materials Based on the Cubic Silicon-Carbon Nitrides
نویسندگان
چکیده
Density functional B3LYP/6-31G(d,p) calculations have been carried out to study the structural peculiarities and physical properties of the series of cubic (defect zinc-blende) silicon-carbon nitrides with composition SixC3-xN4 (x ) 0, 1, 2, 3). As model systems, we have considered six clusters with the structure of the adamantane molecule (CH)4(CH2)6 (I), hexamethylenetetramine-like molecules N4(CH2)6-n(SiH2)n (II-V) (n ) 0, 2, 4, 6), and silicon-substituted adamantane molecule (SiH)4(SiH2)6 (VI). These 10 heavy-atom clusters have been used to simulate the crystalline fragments of diamond (I), cubic (defect zinc-blende) siliconcarbon nitrides (II-V), and cubic (zinc-blende) silicon solid (VI). It was found that the full B3LYP/6-31G(d,p) geometry optimization of these clusters allow us to reproduce the structures, unit cell parameters, and bulk modulus (hardness) of real crystals (I and VI) quite well and to predict the structural and mechanical properties of the hypothetical crystalline compounds (II-V).
منابع مشابه
The phase diagram and hardness of carbon nitrides
Novel superhard materials, especially those with superior thermal and chemical stability, are needed to replace diamond. Carbon nitrides (C-N), which are likely to possess these characteristics and have even been expected to be harder than diamond, are excellent candidates. Here we report three new superhard and thermodynamically stable carbon nitride phases. Based on a systematic evolutionary ...
متن کاملSimple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction
Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...
متن کاملSimple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction
Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...
متن کاملEvidence for a low-compressibility carbon nitride polymorph elaborated at ambient pressure and mild temperature
Superhard materials like diamond are essential for abrasive or cutting tool applications. In this way, carbon nitrides are of relevant interest because they are expected to exhibit exceptional mechanical properties, high values of bulk modulus being predicted. A smart and simple method was used to synthesize carbon nitrides and allowed elaborating a low-compressibility polymorph. The processing...
متن کاملEffect of Aluminum on Microstructure and Thickness of Galvanized Layers on Low Carbon silicon-Free Steel
In hot dip galvanizing, several parameters such as chemical composition of coating bath, immersion time and surface roughness of specimens could affect microstructure and properties of coating. In this article, the effect of aluminum content, immersion time and surface roughness on structure and properties of alloy layers have been investigated. Specimens of low carbon silicon-free steel with d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999